Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent amphetamine.

نویسندگان

  • M E Gnegy
  • P Hong
  • S T Ferrell
چکیده

Repeated, intermittent treatment of rats with amphetamine results in a sensitization of locomotor and stereotyped behaviors that is accompanied by an enhancement in stimulus-induced dopamine release. Increased phosphorylation of the neural specific calmodulin-binding protein, neuromodulin (GAP-43, B-50, F1) has been demonstrated in other forms of synaptic plasticity and plays a role in neurotransmitter release. To determine whether neuromodulin phosphorylation was altered during amphetamine sensitization, the in vivo phosphorylated state of neuromodulin was examined in rat striatum in a post hoc phosphorylation assay. Female, Holtzman rats received saline or 2.5 mg/kg amphetamine twice weekly for 5 weeks. One week after the last dose of amphetamine, rats were challenged with either 1 mg/kg or 2.5 mg/kg amphetamine or saline and the rats were sacrificed 30 min later. Purified synaptic plasma membranes were prepared in the presence of EGTA and okadaic acid to inhibit dephosphorylation, and were subsequently phosphorylated in the presence of purified protein kinase C and [gamma-32P]ATP. The protein kinase C-mediated post hoc phosphorylation of neuromodulin was significantly reduced in groups that received either acute or repeated amphetamine suggesting that neuromodulin in those groups contained more endogenous phosphate. The acute, challenge dose of amphetamine increased neuromodulin phosphorylation in the saline-treated controls but not in the repeated amphetamine-pretreated group. Anti-neuromodulin immunoblots showed no change in neuromodulin levels in any group. There was no significant change in protein kinase C activity in any treatment group. To further investigate the effect of acute amphetamine, the ability of amphetamine to alter neuromodulin phosphorylation in 32Pi-preincubated Percoll-purified rat striatal synaptosomes was examined. Amphetamine (10 microM) significantly increased phosphorylation of a 53 kDa band that migrated with authentic neuromodulin in the synaptosomes by 22% while 500 nM 12-O-tetradecanoylphorbol 13-acetate (TPA) increased neuromodulin phosphorylation by 45%. These data suggest that one injection of amphetamine can increase neuromodulin phosphorylation in rat striatum and that this increase is maintained for at least 1 week following a repeated, sensitizing regimen of amphetamine. Since sensitization can be induced with one dose of amphetamine, it is possible that enhanced neuromodulin phosphorylation could contribute to neurochemical events leading to enhanced release of dopamine and/or behavioral sensitization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine.

Repeated, intermittent treatment of rats with amphetamine followed by a withdrawal period leads to an enhancement in amphetamine-induced dopamine release. We previously reported an increased stoichiometry of site 3-phospho-synapsin I and increased levels of phospho-Ser41-neuromodulin in striatum after repeated amphetamine. In this study, we examined whether the enhanced amphetamine-induced dopa...

متن کامل

Enhanced amphetamine- and K+-mediated dopamine release in rat striatum after repeated amphetamine: differential requirements for Ca2+- and calmodulin-dependent phosphorylation and synaptic vesicles.

After cessation of repeated, intermittent amphetamine, we detected an emergent Ca2+-dependent component of amphetamine-induced dopamine release and an increase in calmodulin and Ca2+- and calmodulin-dependent protein kinase activity in rat striatum. This study examined the involvement of calmodulin-dependent protein kinase II (CaM kinase II) and synaptic vesicles in the enhanced Ca2+-dependent ...

متن کامل

Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes.

Amphetamine is taken up through the dopamine transporter in nerve terminals and enhances the release of dopamine. We previously found that incubation of rat striatal synaptosomes increases phosphorylation of the presynaptic neural-specific protein, neuromodulin (Gnegy et al., Mol. Brain Res. 20:289-293, 1993). Using a state-specific antibody, we now demonstrate that incubation of rat striatal s...

متن کامل

Alterations in calmodulin content and localization in areas of rat brain after repeated intermittent amphetamine.

To assess whether calmodulin (CaM) could have a role in the behavioral sensitization induced by repeated intermittent amphetamine, CaM content was determined in several brain areas from rats repeatedly administered saline or amphetamine. Rats were treated with amphetamine using an escalating dose paradigm and withdrawn for either 4 weeks (withdrawn group) or 30 min (non-withdrawn group). CaM co...

متن کامل

The Role of BDNF/TrkB Signaling in Acute Amphetamine-Induced Locomotor Activity and Opioid Peptide Gene Expression in the Rat Dorsal Striatum

Exposure to psychostimulants increases brain-derived neurotrophic factor (BDNF) mRNA and protein levels in the cerebral cortex and subcortical structures. Because BDNF is co-localized with dopamine and glutamate in afferents to the striatum of rats, it may be co-released with those neurotransmitters upon stimulation. Further, there may be an interaction between the intracellular signaling casca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research. Molecular brain research

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 1993